Exam I , Math 531, Spring 2014

Ayman Badawi

QUESTION 1. (i) (computational) Let $R=Z_{7} \times Z_{5}$. Find all prime ideals of R.
Solution, Sketch : We know from HW each prime ideal of R is of the form $P \times Z_{5}$ for some prime P of Z_{7} or of the form $Z_{7} \times Q$ where Q is a prime ideal of Z_{5} Since Z_{7}, Z_{5} are fields, the prime ideals of R are $\{0\} \times Z_{5}$ and $Z_{7} \times\{0\}$
(ii) (computational) Let $R=Z \times Z$ and $I=18 Z \times 25 Z$. Then I is an ideal of R. Find \sqrt{I}.

Solution, Sketch: Let $(x, y) \in \sqrt{I}$. Then $18\left|x^{n}, 25\right| y^{n}$. Since 2, $\mathbf{3}$ are the prime factors of 18 and 5 is the prime factor of 25 , we conclude that $6 \mid x$ and $5 \mid y$. Hence $x \in 6 Z$ and $y \in 5 Z$ Thus $\sqrt{I} \subseteq 6 Z \times 5 Z$. Let $(a, b) \in 6 z \times 5 Z$. Then it is clear that $(a, b)^{3}=\left(a^{3}, b^{3}\right) \in 12 Z \times 5 Z$. Done.
(iii) Let f be a ring-epimorphism from R onto S. Given that R is a commutative ring without identity and S is a commutative ring. Can we conclude that S has no identity? The answer is no. Give an example.
Solution, Sketch: Let $R=3 Z \times Z$ is a ring with no identity and let $S=Z$ is a ring with identity, $f(3 a, b)=b$ is a ring-epimorphism from R ONTO S.
(iv) Given that R is a commutative ring with $1 \neq 0$ such that $\operatorname{char}(R)=n$.
a. Prove that there is a ring-homomorphism f from Z into R such that $\operatorname{Ker}(f)=n Z$.

Solution, Sketch:

$f: Z \rightarrow R$ such that $f(a)=a .1_{R}$. Clearly f is a ring-homomorphism and $\operatorname{Ker}(f)=n Z$. Hence $Z / n Z$ is ring-isomorphic to Image (f).
b. If $n=25$, prove that $|U(R)| \geq 20$ and $|N i l(R)| \geq 5$.

Solution, Sketch:

Clearly $\mid U\left(\operatorname{image}(f)\left|=\left|U\left(Z_{25}\right)\right|=\phi(25)=20\right.\right.$. Hence $| U(R) \mid \geq 20$. Also note $\operatorname{Nil}\left(Z_{25}\right)=$ $\{0,5,10,15,20\}$. Hence $|\operatorname{Nil}(\operatorname{image}(f))|=5$, and thus $|\operatorname{Nil}(R)| \geq 5$.
c. If $n=11$, prove that R has a subring that is a field. Solution: Since Z_{11} is a field, $\operatorname{Image}(f)$ is a field. Done
(v) Let R be a commutative ring with identity and with exactly two (distinct) maximal ideals L, F such that $L F=$ $\{0\}$.
a. Prove that each element in R is either a zero-divisor or a unit.

Solution:

By Chinese remainder theorem R is ring-isomorphic to $R / L \times R / F=F_{1} \times F_{2}$, where F_{1}, F_{2} are fields. By staring at the product of the two fields. the claim follows.
b. Can you tell me how many idempotents does R have? solution: by staring at $D=F_{1} \times F_{2}$, idempotents of D are $(0,0),(1,0),(0,1)$, and $(1,1)$. Hence R has exactly 4 idempotents.
c. Prove that $L=e R$ for some idempotent e of R.

Solution, Sketch:

Since L, F are co-prime, there is an $i \in L$ and an $f \in F$ such that $i+f=1$. Since $i f=0$ by hypothesis, $i(i+f)=i \cdot 1=i$. Hence $i^{2}=i$ is an idempotent. Clearly $i R \subseteq L$. Let $x \in L$. We show $x \in i R$. Since $i+f=1$, we have $x(i+f)=x i+x f=x \cdot 1$. Since $x f=0, x i=x$. Thus $x \in i R$. Hence $L=i R$.
(vi) Let P be a prime ideal of a commutative ring R. Prove that $N i l(R) \subseteq P$

Solution, sketch:
Let $w \in \operatorname{Nil}(R)$. Then $w^{n}=0 \in P$. Let $D=R / P$. Since D is an integral domain, we have $\operatorname{Nil}(D)=$ $\{0\}=\{P\}$. Since $(w+P)^{n}=w^{n}+P=0+P=P$, we conclude that $w+P \in \operatorname{Nil}(D)$. Thus $w+P=P$ and hence $w \in P$.
(vii) Let R be a commutative ring with 1 . Let $A=R(+) R$. For $(a, b),(c, d) \in A$, define $(a, b)+(c, d)=(a+c, b+d)$ and $(a, b) \cdot(c, d)=(a c, b c+a d)$. Then we know that A is a commutative ring with 1 (Do not show that).
a. Show that $(0, r) \in \operatorname{Nil}(A)$ for every $r \in R$. Solution, Sketch: $(0, r)^{2}=(0,0)$. Done.
b. Let $Q=L(+) M$ be a prime ideal of A, where L, M are some ideals of R. Show that L is a prime ideal of R and $M=R$.
Solution, Sketch: Let $x y \in L$. Since $(x, 0)(y, 0) \in Q$ and Q is prime, $(x, 0) \in Q$ or $(y, 0) \in Q$. Thus $x \in L$ or $y \in L$.
Let $r \in R$. Since $(0, r) \in \operatorname{Nil}(A)$, we conclude that $(0, r) \in Q$ by (VI). Thus $r \in M$ and hence $M=R$
(viii) Let I, J be co-prime proper ideals of a commutative ring R with $1 \neq 0$. Prove that I, J^{2} are co-prime ideals of R and I^{2}, J^{2} are co-prime ideals of R.
Solution, Sketch: there is an $i \in I$ and $j \in J$ such that $i+j=1$. Thus $(i+j)^{2}=1$. Hence $i^{2}+2 i j+j^{2}=1$. Thus $i(i+2 j)+j^{2}=1$. Since $i(i+2 j) \in I$ and $j^{2} \in J^{2}$, we are done.
Also, $1=(i+j)^{3}=i^{3}+3 i^{2} j+3 i j^{2}+j^{3}=i^{2}(i+3 i)+j^{2}(3 i+j)$. Since $i^{2}(i+3 j) \in I^{2}$ and $j^{2}(j+3 i) \in J^{2}$, we are done
NOTE that if you only prove that I^{2} and J^{2} are co-prime, then surely I and J^{2} are co-prime since $I^{2} \subseteq I$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

