MTH 531 Graduate Abstract Algebra II Spring 2014, 1–2

Exam I, Math 531, Spring 2014

Ayman Badawi

QUESTION 1. (i) (computational) Let $R = Z_7 \times Z_5$. Find all prime ideals of R.

Solution, Sketch : We know from HW each prime ideal of R is of the form $P \times Z_5$ for some prime P of Z_7 or of the form $Z_7 \times Q$ where Q is a prime ideal of Z_5 Since Z_7, Z_5 are fields, the prime ideals of R are $\{0\} \times Z_5$ and $Z_7 \times \{0\}$

(ii) (computational) Let $R = Z \times Z$ and $I = 18Z \times 25Z$. Then I is an ideal of R. Find \sqrt{I} .

Solution, Sketch: Let $(x, y) \in \sqrt{I}$. Then $18 | x^n, 25 | y^n$. Since 2, 3 are the prime factors of 18 and 5 is the prime factor of 25, we conclude that 6 | x and 5 | y. Hence $x \in 6Z$ and $y \in 5Z$ Thus $\sqrt{I} \subseteq 6Z \times 5Z$. Let $(a, b) \in 6z \times 5Z$. Then it is clear that $(a, b)^3 = (a^3, b^3) \in 12Z \times 5Z$. Done.

(iii) Let f be a ring-epimorphism from R onto S. Given that R is a commutative ring without identity and S is a commutative ring. Can we conclude that S has no identity? The answer is no. Give an example.

Solution, Sketch: Let $R = 3Z \times Z$ is a ring with no identity and let S = Z is a ring with identity, f(3a, b) = b is a ring-epimorphism from R ONTO S.

(iv) Given that R is a commutative ring with $1 \neq 0$ such that char(R) = n.

b. If n = 25, prove that $|U(R)| \ge 20$ and $|Nil(R)| \ge 5$.

a. Prove that there is a ring-homomorphism f from Z into R such that Ker(f) = nZ. Solution, Sketch:

 $f: Z \to R$ such that $f(a) = a.1_R$. Clearly f is a ring-homomorphism and Ker(f) = nZ. Hence Z/nZ is ring-isomorphic to Image (f).

- Solution, Sketch: Clearly $|U(image(f))| = |U(Z_{25})| = \phi(25) = 20$. Hence $|U(R)| \ge 20$. Also note $Nil(Z_{25}) = \{0, 5, 10, 15, 20\}$. Hence |Nil(image(f))| = 5, and thus $|Nil(R)| \ge 5$.
- c. If n = 11, prove that R has a subring that is a field. Solution: Since Z_{11} is a field, Image(f) is a field. Done
- (v) Let R be a commutative ring with identity and with exactly two (distinct) maximal ideals L, F such that $LF = \{0\}$.
 - a. Prove that each element in R is either a zero-divisor or a unit.
 - Solution:

By Chinese remainder theorem R is ring-isomorphic to $R/L \times R/F = F_1 \times F_2$, where F_1, F_2 are fields. By staring at the product of the two fields. the claim follows.

- b. Can you tell me how many idempotents does R have? solution: by staring at $D = F_1 \times F_2$, idempotents of D are (0,0), (1,0), (0,1), and (1,1). Hence R has exactly 4 idempotents.
- c. Prove that L = eR for some idempotent e of R.

Solution, Sketch:

Since L, F are co-prime, there is an $i \in L$ and an $f \in F$ such that i + f = 1. Since if = 0 by hypothesis, $i(i + f) = i \cdot 1 = i$. Hence $i^2 = i$ is an idempotent. Clearly $iR \subseteq L$. Let $x \in L$. We show $x \in iR$. Since i + f = 1, we have $x(i + f) = xi + xf = x \cdot 1$. Since xf = 0, xi = x. Thus $x \in iR$. Hence L = iR.

(vi) Let P be a prime ideal of a commutative ring R. Prove that $Nil(R) \subseteq P$

Solution, sketch:

Let $w \in Nil(R)$. Then $w^n = 0 \in P$. Let D = R/P. Since D is an integral domain, we have $Nil(D) = \{0\} = \{P\}$. Since $(w + P)^n = w^n + P = 0 + P = P$, we conclude that $w + P \in Nil(D)$. Thus w + P = P and hence $w \in P$.

(vii) Let R be a commutative ring with 1. Let A = R(+)R. For $(a, b), (c, d) \in A$, define (a, b) + (c, d) = (a+c, b+d)and (a, b).(c, d) = (ac, bc + ad). Then we know that A is a commutative ring with 1 (Do not show that).

a. Show that $(0,r) \in Nil(A)$ for every $r \in R$. Solution, Sketch: $(0,r)^2 = (0,0)$. Done.

- b. Let Q = L(+)M be a prime ideal of A, where L, M are some ideals of R. Show that L is a prime ideal of R and M = R.
 - Solution, Sketch: Let $xy \in L$. Since $(x, 0)(y, 0) \in Q$ and Q is prime, $(x, 0) \in Q$ or $(y, 0) \in Q$. Thus $x \in L$ or $y \in L$.
 - Let $r \in R$. Since $(0, r) \in Nil(A)$, we conclude that $(0, r) \in Q$ by (VI). Thus $r \in M$ and hence M = R
- (viii) Let I, J be co-prime proper ideals of a commutative ring R with $1 \neq 0$. Prove that I, J^2 are co-prime ideals of R and I^2, J^2 are co-prime ideals of R.

Solution, Sketch: there is an $i \in I$ and $j \in J$ such that i+j = 1. Thus $(i+j)^2 = 1$. Hence $i^2 + 2ij + j^2 = 1$. Thus $i(i+2j) + j^2 = 1$. Since $i(i+2j) \in I$ and $j^2 \in J^2$, we are done.

Also, $1 = (i+j)^3 = i^3 + 3i^2j + 3ij^2 + j^3 = i^2(i+3i) + j^2(3i+j)$. Since $i^2(i+3j) \in I^2$ and $j^2(j+3i) \in J^2$, we are done

NOTE that if you only prove that I^2 and J^2 are co-prime, then surely I and J^2 are co-prime since $I^2 \subseteq I$

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com